Polynomials are named according to their degree and number of terms.

Degree: Largest exponent

Degree	Name	Example
0	Constant	8
1	Linear	$-5 x$
2	Quadratic	$6 x^{2}+3 x$
3	Cubic	$-4 x^{3}+3 x^{2}-10$
4	Quartic	$x^{4}+2 x-8$
5	Quintic	$2 x^{5}+4 x^{2}-6 x+12$
6 or higher	6th degree, 7 th degree, etc.	$5 x^{6}+3 x^{3}-2 x^{2}+7$

Terms are separated by addition or isubtraction.

Terms	Name	Example
1	Monomial	$6 x$
2	Binomial	$7 x^{2}+3 x$
3	Trinomial	$2 x^{4}-6 x^{3}+9$
4 or more	Polynomial	$x^{4}+2 x^{3}-8 x^{2}+2 x$

Let's Practice! Name the following polynomials:
$-7+3 n^{3} \quad$ cubic binomial (degree $=3$ and 2 terms)
5
constant monomial (degree $=0$ and 1 term)
$-x^{4}+3 x^{2}-11$ quartic trinomial (degree $=4$ and 3 terms)

Polynomials are named according to their degree and number of terms.

Degree: Largest exponent

Degree	Name	Example
0	Constant	8
1	Linear	-5 x
2	Quadratic	$6 \mathrm{x}^{2}+3 \mathrm{x}$
3	Cubic	$-4 \mathrm{x}^{3}+3 \mathrm{x}^{2}-10$
4	Quartic	$\mathrm{x}^{4}+2 \mathrm{x}-8$
5	Quintic	$2 \mathrm{x}^{5}+4 \mathrm{x}^{2}-6 \mathrm{x}+12$
6 or higher	6th degree, 7 th degree, etc.	$5 \mathrm{x}^{6}+3 \mathrm{x}^{3}-2 \mathrm{x}^{2}+7$

Terms are separated by addition or isubtraction.

Terms	Name	Example
1	Monomial	6 x
2	Binomial	$7 \mathrm{x}^{2}+3 \mathrm{x}$
3	Trinomial	$2 \mathrm{x}^{4}-6 \mathrm{x}^{3}+9$
4 or more	Polynomial	$\mathrm{x}^{4}+2 \mathrm{x}^{3}-8 \mathrm{x}^{2}+2 \mathrm{x}$

Let's Practice! Name the following polynomials:
$-7+3 n^{3} \quad$ cubic binomial (degree $=3$ and 2 terms)
5
constant monomial (degree $=0$ and 1 term)
$-x^{4}+3 x^{2}-11$ quartic trinomial (degree=4 and 3 terms)

